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Research

Recent interests in developing environmental 
public health tracking systems, particularly in 
the United States and the United Kingdom, 
have provided an opportunity to advance 
techniques for spatial epidemiological analysis. 
The U.S. Centers for Disease Control and 
Prevention (CDC) and the U.K. Small Area 
Health Statistics Unit (SAHSU) have collabo-
rated to adapt and enhance a tool for evaluat-
ing spatial relationships between health and 
environmental risk factors, for use in CDC’s 
National Environmental Public Health 
Tracking (EPHT) program (CDC 2004).

Since 2002, the CDC’s EPHT program 
has worked with local and state environment 
and health agencies, federal agencies such as 
the U.S. Environmental Protection Agency 
(EPA), academic institutions, and other 
nongovernmental agencies to develop and 
enhance the ongoing collection, integration, 
analysis, and interpretation of environmental 
hazards, human exposures to environmen-
tal hazards, and noninfectious health effects 
potentially related to these exposures 
(McGeehin et al. 2004). The key functions of 
the EPHT program are a) to compile a core 
set of nationally consistent health and envi-
ronmental data and measures; b) discover, 
describe, exchange, analyze, and manage data; 

c) provide access to tools for managing and 
analyzing the data; and d) disseminate envi-
ronmental public health information to the 
public (CDC 2006). As part of this coordi-
nated network to develop tools and methods, 
a partnership between the EPHT network 
and the SAHSU was initiated in 2005.

The SAHSU was established in 1987 after 
a recommendation of the Black (1980) inquiry 
into the incidence of leukemia among children 
and young adults near the Sellafield nuclear 
plant. One of the main aims of SAHSU is to 
assess the risk to the health of the population 
from environmental factors, with an emphasis 
on the use and interpretation of routine health 
data. A tool, the Rapid Inquiry Facility (RIF), 
was developed at SAHSU to help staff respond 
rapidly, with expert advice, to ad hoc que-
ries from funding departments about unusual 
clusters of disease, particularly in the neigh-
borhood of putative environmental hazard 
sources (Aylin et al. 1999).

This early version of the RIF was designed 
specifically for use with SAHSU data. The 
RIF software and the processes behind it were 
then evaluated on a European level as part 
of the European Health and Environment 
Information System for Exposure and Disease 
Mapping and Risk Assessment Project 

(EUROHEIS and EUROHEIS 2), with sev-
eral EUROHEIS partners making changes to 
the RIF to facilitate its use with data from other 
European countries (e.g., Ferrándiz et al. 2004; 
Juhász et al. 2010). With the commencement 
of the CDC EPHT, the RIF was seen as a 
valuable tool that, with further enhancement, 
could be used more widely, such as in U.S. 
state health departments, to facilitate the pro-
cess of responding to environmental health 
issues from policy makers and the public alike.

This article describes the development of 
this spatial epidemiological tool and reports 
on two case studies that used the system.

The investigation of possible health effects 
around point sources of environmental pollu-
tion have traditionally been costly and time-
consuming because health and population 
data relevant to the area under study would 
need to be assembled and analyzed ad hoc. 
Linking health, population, and exposure 
data allows environmental public health prac-
titioners to evaluate the spatial and tempo-
ral relations between environmental factors 
and health (McGeehin et al. 2004). Using 
geographical analysis, researchers can assess 

Address correspondence to L. Beale, Imperial 
College London, Department of Epidemiology and 
Biostatistics, St Mary’s Campus, London, W2 1PG, 
UK. Telephone: 44-20-7594-3348. Fax: 44-20-7594-
3196. E-mail: l.beale@imperial.ac.uk

We acknowledge the significant contributions that 
M. Andersson and D. Tirado (database program-
mers) and P. Hambly (database manager) made to 
the development of the Rapid Inquiry Facility.

This work was partially funded by the U.S. Centers 
for Disease Control and Prevention (CDC; contract 
200-2005-13328) and by the European Union (grant 
2006126-EUROHEIS 20), in the framework of the 
Public Health Programme. The work of the Small 
Area Health Statistics Unit is funded by a grant from 
the Department of Health for England and the U.K. 
Department for Environment, Food and Rural Affairs 
The work carried out by the Utah Department of 
Health was supported, in part, by the CDC (grants 
U50/CCU822437 and 1-U38-EH000182). Data 
were provided by the Utah Cancer Registry (UCR), 
which was funded by contract N01-PC-35141 from 
the National Cancer Institute, Utah Department of 
Health (UDOH), and the University of Utah (UU). 

The contents of this work are solely the responsi-
bilities of the authors and do not necessarily represent 
the official views of the CDC, UCR, UDOH, UU, or 
the other funding departments. 

The authors declare they have no actual or potential 
competing  financial interests.

Received 18 December 2009; accepted 10 May 2010.

Evaluation of Spatial Relationships between Health and the Environment: 
The Rapid Inquiry Facility
Linda Beale,1 Susan Hodgson,2 Juan Jose Abellan,3 Sam LeFevre,4 and Lars Jarup1

1Small Area Health Statistics Unit, MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial 
College London, United Kingdom; 2Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, United Kingdom; 
3CIBER Epidemiología y Salud Pública, Centre for Public Health Research, Valencia, Spain; 4Bureau of Epidemiology, Utah Department 
of Health, Salt Lake City, Utah, USA

Background: The initiation of environmental public health tracking systems in the United States 
and the United Kingdom provided an opportunity to advance techniques and tools available for 
spatial epidemiological analysis integrating both health and environmental data.

oBjective: The Rapid Inquiry Facility (RIF) allows users to calculate adjusted and unadjusted stan-
dardized rates and risks. The RIF is embedded in ArcGIS so that further geographical information 
system (GIS) spatial functionality can be exploited or results can be exported to statistical packages 
for further tailored analyses where required. The RIF also links directly to several statistical packages 
and displays the results in the GIS.

Methods: The value of the RIF is illustrated here with two case studies: risk of leukemia in areas 
surrounding oil refineries in the State of Utah (USA) and an analysis of the geographical varia-
tion of risk of esophageal cancer in relation to zinc cadmium sulfide exposure in Norwich (United 
Kingdom).

results: The risk analysis study in Utah did not suggest any evidence of increased relative risk 
of leukemia, multiple myeloma, or Hodgkin’s lymphoma in the populations around the five oil-
refining facilities but did reveal an excess risk of non-Hodgkin’s lymphoma that might warrant 
further investigation. The disease-mapping study in Norwich did not reveal any areas with higher 
relative risks of esophageal cancer common to both males and females, suggesting that a common 
geographically determined exposure was unlikely to be influencing cancer risk in the area.

conclusion: The RIF offers a tool that allows epidemiologists to quickly carry out ecological envi-
ronmental epidemiological analysis such as risk assessment or disease mapping.
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spatial trends in rates and risks at different 
geographical scales and potential clusters of 
disease and ascertain areas of rapid population 
change or areas of good or poor health.

The contribution that geographical infor-
mation science can make to spatial epide-
miology is increasingly being recognized 
(Elliott and Wartenberg 2004; Jarup 2004). 
Ever growing numbers of epidemiological 
institutions and departments use geographical 
information systems (GIS), but health and 
population data sets used are not yet rou-
tinely stored in a GIS; instead, they are sim-
ply imported on an ad hoc basis. The ability 
to undertake spatial analysis without the need 
for significant data manipulation offers tre-
mendous time advantages.

The RIF has been developed primarily to 
assess the links among environmental expo-
sures, health outcomes, and risk for groups, or 
ecological-level analysis using readily available 
aggregated health and population data such as 
those collected for censuses. There are a num-
ber of inherent issues with ecological analysis, 
which include problems with data availabil-
ity and suitability, as well as methodological 
challenges such as dealing with inconsistent 
geographical boundaries, different data scales, 
exposure misclassification, and ecological bias 
(Elliott and Savitz 2008). A number of differ-
ent statistical methods can be used to estimate 
area-level risks and confidence intervals to give 
an assessment of associated uncertainty, which 
differ in suitability depending on the study 
(Beale et al. 2008). The methods included 
within the RIF aim to minimize many of the 
limitations indicated above, whereas exploit-
ing the advantages offered by high-resolution 
data for large areas such as states or countries, 
and over long periods of time.

Materials and Methods
The RIF has been described in detail elsewhere 
(Beale et al. 2008). Briefly, this tool is embed-
ded in a GIS that requires ArcGIS (version 
9.3; ESRI, Redlands, CA, USA) and con-
nects to an external database such as Microsoft 
Access or Oracle of geocoded health and 
population data. This tight-coupled approach 
between a GIS and a database removes the 
need to explicitly gather data by study, saving 
on both time and data storage.

The RIF calculates directly standardized 
rates and indirectly standardized rate ratios in 
a user-defined population. Users can specify, 
via various means of selection or by spatial 
analyses, a “study population,” such as the 
population living within a certain distance of a 
point or area source of pollution or the popula-
tions of administrative areas falling within the 
jurisdiction of a health authority. All specified 
health events that occurred during the selected 
time period and that fall within this study 
area are retrieved, together with the relevant 

population data. The RIF can handle any 
health coding [e.g., International Classification 
of Diseases (ICD); ICD-Oncology; Surveillance, 
Epidemiology and End Results (SEER); and 
user-defined codes]; for data coded using the 
ICD-9 [World Health Organization (WHO) 
2004] and ICD-10 (WHO 2007), the RIF 
provides lists to enable health events to be 
selected by chapters, groups, or individual 
codes. Applying the study population sex- and 
age-specific disease rates to the reference region 
population generates directly standardized rates. 
Indirectly standardized relative risks project 
the sex- and age-specific rates of the reference 
population to the age and sex structure of the 
study population producing standardized mor-
tality ratios (SMRs) or standardized incidence 
ratios (SIRs). When defining the study area, 
users should take into account that the num-
ber of observed cases required to support valid 
SIRs are less than those required to support 
directly age-adjusted rates. In addition to sex 
and age, standardization by other covariate(s), 
such as socioeconomic status (SES), ethnicity, 
or income (where such data are available), is 
easily achieved.

Two main types of analysis can be car-
ried out using the RIF: risk analysis and dis-
ease mapping. Using risk analysis, associations 
between either proximity (to point, line, or 
area sources) or exposure to a putative risk 
factor and health can be explored. Rates and 
relative risks are calculated in user-defined 
distance bands around one or more sources, 
or levels of exposure if such data are available. 
Users can also run homogeneity and linear 
trend tests to check if the risk is statistically 
homogeneous across bands. Disease mapping 
allows visualization of mortality or morbidity 
rates and spatial patterns of health at a user-
defined geographical resolution. Maps are 
produced of rates and relative risks, includ-
ing smoothed (toward the global mean) rela-
tive risks, by empirical Bayesian estimation 
using the Poisson-gamma model suggested by 
Clayton and Kaldor (1987). The RIF can also 
link with external software such as SaTScan 
(Kulldorff and Nagarwalla 1995) to search 
for disease clusters as well as WinBUGS 
(Bayesian inference using Gibbs sampling; 
Lunn et al. 2000) and integrated nested 
Laplace approximation (Rue et al. 2009) to 
produce smoothed (toward the local mean) 
risks based on the fully Bayesian model pro-
posed by Besag et al. (1991). In all cases the 
results are mapped in the GIS.

Data can be easily exported from the RIF 
so that numerator, denominator, rates, and 
risks can be used elsewhere meaning the RIF 
adds functionality to the “epidemiologists’ 
toolkit” rather than replace existing tools or 
approaches. For example, users can export 
data to MS EXCEL, WinBUGS (Lunn 
et al. 2000), and SaTScan (Kulldorff and 

Nagarwalla 1995). In addition, the RIF can 
seamlessly generate reports in, for example, 
MS Word using XML-structured data (text).

The following sections illustrate the use of 
the RIF with two case studies: a risk analysis 
from the United States and a disease-mapping 
analysis from the United Kingdom.

Results
Case study: U.S. risk analysis. The Utah 
Department of Health began investigating 
a perceived excess of leukemia after requests 
from the local community at Woods Cross.

Oil refining activities in Utah started as 
early as 1909, with approximately seven oil 
companies working in 25 wells near Mexican 
Hat, San Juan County (Figure 1). The first 
of five currently operating refineries, located 
nearly adjacent to each other along an 11-km 
north–south corridor, was built in 1932 
(Harline 1963; Strack 2007). These five refin-
ery facilities process approximately 61 million 
barrels annually (Isaacson 2005). Industries 
associated with oil refining are colocated with 
these refineries, and several National Priority 
List hazardous waste sites are found in the 
vicinity (U.S. EPA 2009)

In 2004, these five refineries reportedly 
released 161,000 kg of hazardous air emis-
sions, including benzene, cyclohexane, ethyl-
benzene, and ethylene. In addition, there 
are likely to be substantial fugitive releases 
of vola tile organic hydrocarbon compounds 
from the transportation of oil by tanker truck 
and pipeline, from the transfer and processing 
of crude oil, and from the storage of product, 
and refineries release a number of processing-
related air contaminants (U.S. EPA 2009). 
Leukemia, multiple myeloma, Hodgkin’s 
lymphoma, and non-Hodgkin’s lymphoma 
(NHL) have been associated with hazardous 
air emissions released by oil refineries (Infante 
1993; Rushton 1993; San Sebastián et al. 
2001; Smith et al. 2007).

Because it was not possible to accurately 
identify which populations were exposed, a 
pragmatic decision was made to assess risk 
in the census blocks within 2.5 km and 
between 2.5 and 5 km of the refineries. These 
distances capture sufficiently sizable popu-
lations for meaningful analysis, reflect dif-
ferences in the topography of the area that 
may influence exposure, and conform to an 
earlier initial investigation, enabling compari-
sons to be made. The topography of Davis 
County forces the communities into a narrow 
band (~ 10 km wide running north to south). 
The communities are bounded by the steep 
Wasatch Mountain Range on the east and the 
Great Salt Lake on the west. Approximately 
2.5 km east of the refinery, the topography 
changes (due to Lake Bonneville, an ancient 
parent inland sea), whereas at 2.5 km west 
of the refinery the land use transitions from 
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mixed suburban and agricultural use to solely 
agricultural use. Bountiful is approximately 
5 km south from the refineries at a higher ele-
vation, suggesting that it may be at risk from 

plumes from stack emissions, particularly 
given that the predominant wind direction is 
southerly. Exposures at Woods Cross, within 
2.5 km, are more likely a result of fugitive 

emissions because it sits in the shadow of the 
plume. Approximately 62,000 and 87,000 
residents live within 2.5 km and between 2.5 
and 5.0 km from the refineries, respectively.

Cancer incidence data on first primary 
leukemia (ICD-9 codes 204–207; ICD-10 
codes C91–C95), multiple myeloma (ICD-9 
code 203, ICD-10 code C90), Hodgkin’s 
lymphoma (ICD-9 code 201; ICD-10 code 
C81), and NHL (ICD-9 codes 200, 202; 
ICD-10 codes C82–C85) among Utah 
residents from 1973 to 2006 were obtained 
from the Utah Cancer Registry and inves-
tigated at census-block-group level. The 
cancer data were georeferenced by the Utah 
Environmental Public Health Tracking 
Network (UEPHTN), with > 98% being geo-
referenced to census block groups using case 
report residential address. Median income 
from the 2000 Census was used to control 
for confounding by SES. The latency for 
these cancers is generally assumed to be about 
5 years, although longer latency periods have 
been reported (Crump and Allen 1984).

Risk of leukemia, multiple myeloma, 
Hodgkin’s lymphoma, and NHL (SIR). 
Cancer risks for populations of census blocks 
falling within 2.5 km of the five facilities 
(encompassing the residential area of Woods 
Cross) and between 2.5 and 5.0 km (captur-
ing all surrounding communities) were com-
pared with cancer risks for the State of Utah. 
Analysis was carried out, using the RIF, with 
33 years of cancer incidence data to ensure 
stable estimates (Table 1).

Only the risks of NHL were statistically 
higher than would be expected given the ref-
erence rates of Utah. The values showed that 
males living closest to the refineries had the 
highest risk. SIRs adjusted for age and income 
were virtually the same as SIRs adjusted for 
age only, suggesting that the excess risks of 
NHL within 2.5 km of the oil refineries are Figure 1. Oil refineries located near Woods Cross and Bountiful, Utah.
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Table 1. Indirectly standardized risks for leukemia, multiple myeloma, Hodgkin’s lymphoma, and NHL around the five refinery facilities, Utah (1973–2006).

Distance > 2.5 km Distance of 0–2.5 km

Adjusted for age Adjusted for age and income Adjusted for age Adjusted for age and income
Health end point/sex Observed Expected SIR (95% CI) Expected SIR (95% CI) Observed Expected SIR (95% CI) Expected SIR (95% CI)
Leukemia

Male 103 101.88 1.01 (0.83–1.23) 103.52 1.00 (0.82–1.21) 145 140.46 1.03 (0.88–1.21) 140.82 1.03 (0.87–1.21)
Female 80 79.63 1.00 (0.80–1.25) 79.88 1.00 (0.79–1.25) 100 106.96 0.93 (0.76–1.14) 108.08 0.93 (0.75–1.13)
Male + female 183 181.50 1.01 (0.87–1.17) 183.40 1.00 (0.86–1.15) 245 247.42 0.99 (0.87–1.12) 248.91 0.98 (0.87–1.12)

Multiple myeloma
Male 34 36.84 0.92 (0.64–1.29) 36.99 0.92 (0.64–1.28) 52 50.69 1.03 (0.77–1.35) 50.07 1.04 (0.78–1.36)
Female 34 30.73 1.11 (0.77–1.55) 30.93 1.10 (0.76–1.54) 35 41.70 0.84 (0.58–1.17) 40.48 0.86 (0.60–1.20)
Male + female 68 67.57 1.01 (0.78–1.28) 67.92 1.00 (0.78–1.27) 87 92.39 0.94 (0.75–1.16) 90.54 0.96 (0.77–1.19)

Hodgkin’s lymphoma
Male 26 25.42 1.02 (0.67–1.50) 26.70 0.97 (0.64–1.43) 34 37.49 0.91 (0.63–1.27) 37.68 0.90 (0.62–1.26)
Female 27 21.29 1.27 (0.84–1.85) 21.45 1.26 (0.83–1.83) 30 29.55 1.02 (0.68–1.45) 31.85 0.94 (0.64–1.34)
Male + female 53 46.71 1.13 (0.85–1.48) 48.15 1.10 (0.82–1.44) 64 67.04 0.95 (0.74–1.22) 69.52 0.92 (0.71–1.18)

NHL
Male 148 118.23 1.25 (1.07–1.47) 119.45 1.24 (1.05–1.46) 184 165.75 1.11 (0.96–1.28) 165.75 1.11 (0.96–1.28)
Female 118 108.30 1.09 (0.91–1.31) 107.88 1.09 (0.91–1.31) 141 147.21 0.96 (0.81–1.13) 146.90 0.96 (0.81–1.13)
Male + female 266 226.53 1.17 (1.04–1.32) 227.32 1.17 (1.04–1.32) 325 312.96 1.04 (0.93–1.16) 312.65 1.04 (0.93–1.16)

CI, confidence interval.
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not related to income. The socioeconomic 
structure of the population in Bountiful has 
changed during the study period, so analy-
ses were also carried out using income from 
1990, but again, income had little to no effect 
on the overall results.

Exposures are hard to establish, and 
although refinery boundaries have remained 
pretty stable during the past 30 years, the loca-
tions of stacks and sources of fugitive emis-
sions have changed as plants have changed 
processes and/or built additional facilities 
and as ancillary industries around these sites 
have changed in use or been abandoned or 
relocated over time (with some becoming 
Superfund sites). The distance bands used 
in this study, although thoughtfully chosen, 
remain arbitrary boundaries.

These analyses did not show any evi-
dence of increased risk of leukemia, multi-
ple myeloma, or Hodgkin’s lymphoma in 
the populations around these five facilities. 
An excess risk of NHL was found in popu-
lations living around the oil refineries, and 
exposure to emissions from these sites is a 
possible explanation [e.g., Steinmaus et al. 
(2008) linked both leukemia and certain types 
of NHL to benzene exposure]. An excess 
of disease among men could also point to 
occupational exposure, although a substan-
tial number of the refinery employees lived 
outside of the study area (e.g., north Davis 
County and Salt Lake County). Further inves-
tigation to identify what specific disease sub-
type is occurring and whether environmental 
or occupational exposures have contributed to 
risk would need to be conducted.

The above example shows how the RIF 
can help effectively use limited public health 
resources by identifying target populations who 
could most benefit from public health inter-
vention, education, and early screening clinics.

Case study: U.K. disease mapping. During 
the period of the “cold war” (1953–1964), 
the British Ministry of Defense undertook an 
extensive program of field trials to simulate the 
dissemination of toxic biological agents across 

the country (Academy of Medical Sciences 
1999). The field trials involved the release of 
zinc cadmium sulfide (ZnCdS) from static 
devices, vehicles, aircraft, and ships. An inde-
pendent review of these U.K. trials concluded 
that exposure to cadmium from the dissemi-
nation of ZnCdS during the cold war should 
not have resulted in adverse health effects in 
the population (Elliott et al. 2002). However, 
in 2005, a local surgeon suggested that there 
was an increased risk of esophageal cancer in 
Norwich caused by exposure of the local pop-
ulation to ZnCdS released by the Ministry of 
Defense in 1963 (Reacher et al. 2006).

The U.K. Health Protection Agency 
(HPA) carried out a preliminary investigation 
to assess whether there was any evidence that 
the residents of the city of Norwich, County of 
Norfolk, were at an increased risk of esopha-
geal cancer during the period 1984–2003. 
Although no evidence was found that inci-
dence rates were higher in Norwich than in 
the rest of England and Wales, they did find a 
higher incidence of esophageal cancer registra-
tions in the County of Norfolk (Reacher et al. 
2006). There were, however, some limitations 
to this work; in particular, rates and risks were 
not adjusted for age, sex, or SES. Therefore, 
a second study was recommended and was  
carried out using the RIF.

Incidence and mortality of esophageal 
cancer (ICD-9 code 150, ICD-10 code C15) 
for 1984–2003 (the same period as investi-
gated by the HPA) were investigated at stan-
dard table (ST) ward level for Norfolk. Wards 
or electoral divisions are key elements of U.K. 
administrative geography and refer to the spa-
tial units used to elect local government coun-
cilors. There are 7,932 ST wards in England, 
with an average population of 6,200. It was 
not possible to establish precisely which areas 
or populations were exposed to ZnCdS, but at 
least one trial involved dispersion of ZnCdS 
over Norwich (Academy of Medical Sciences 
1999); thus, the population of Norwich 
could reasonably be identified as a potentially 
“exposed” group.

Indirect SIRs and SMRs were calculated 
taking the population of England and Wales as 
a reference, and risks were adjusted for age, sex, 
and SES. Population data from each decennial 
census (1981, 1991, 2001) were used, with 
populations interpolated for intercensal years 
using data on population growth. Adjustment 
for SES was by the Carstairs index (in quin-
tiles), the 1991 census measure of deprivation 
(Carstairs and Morris 1990), which combines 
data on male unemployment, car access, social 
class, and overcrowding to allow geographical 
areas to be placed on a five-point scale from 
least to most deprived.

Risk of esophageal cancer: SIR and SMR. 
Relative risks of esophageal cancer incidence 
and mortality were not higher in the City of 
Norwich than expected. After adjustment for 
SES, risks were statistically significantly lower 
in women than would be expected (Table 2). 
Directly standardized incidence and mortality 
rates per 100,000 person-years for Norwich 
were at the lower end of the range of those for 
England, reported to be 12.7–14.4 per 100,000 
person-years among males and 8.6–9.3  
per 100,000 among females for esopha geal 
cancer incidence (during 1991–1999), and 
14.4 per 100,000 among males and 8.2 per 
100,000 among females for esophageal cancer 
mortality (during 1998) (Office for National 
Statistics 1999a, 1999b).

When adjusted relative risks of esophageal 
cancer incidence were mapped by ward across 
the County of Norfolk, no consistent pat-
terns emerged (Figure 2). The areas of highest 
relative risk for males and females differed, 
suggesting a common geographically deter-
mined exposure (e.g., ZnCdS) was unlikely 
to be influencing esophageal cancer risk in the 
area. Table 3 shows the indirectly standard-
ized risks across Norfolk.

The RIF performs empirical Bayes 
smoothing of the raw relative risks to account 
for sampling variability in the observed data 
(Figure 2B). Full Bayesian smoothing was also 
carried out by direct linkage to WinBUGS 
(Lunn et al. 2000) (Figure 2C). This approach 

Table 2. Indirectly and directly standardized rates of incidence and mortality from esophageal cancer in the City of Norwich (1984–2003), using the population of 
England and Wales as a reference.

Incidence Mortality

Adjusted for age Adjusted for age and SES Adjusted for age Adjusted for age and SES
Sex Observed Expected SIR (95% CI) Expected SIR (95% CI) Observed Expected SIR (95% CI) Expected SIR (95% CI)
Indirectly standardized risks

Male 159 165.03 0.96 (0.82–1.13) 173.8 0.91 (0.78–1.07) 166 162.09 1.02 (0.88–1.19) 169.41 0.98 (0.84–1.14)
Female 87 120.92 0.72 (0.58–0.89) 125.19 0.69 (0.56–0.86) 85 112.63 0.75 (0.60–0.93) 116.04 0.73 (0.59–0.91)
Male + female 246 285.95 0.86 (0.76–0.97) 298.99 0.82 (0.73–0.93) 166 162.09 1.02 (0.81–1.03) 285.46 0.88 (0.78–1.00)

Observed
Rate (per 100,000  

person-years)
Rate (per 100,000  

person-years) Observed
Rate (per 100,000  

person-years)
Rate (per 100,000  

person-years)
Directly standardized risks

Male 159 13.20 (11.30–15.44) 11.47 (9.38–14.03) 166 13.68 (11.74–15.94) 12.68 (10.12–15.90)
Female 87 6.25 (5.00–7.72) 6.09 (4.52–7.94) 85 6.07 (4.84–7.52) 5.79 (4.28–7.57)
Male + female 246 9.64 (8.5–10.93) 8.71 (7.41–10.24) 251 9.78 (8.63–11.07) 9.15 (7.67–10.91)

CI, confidence interval.
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allows computation of a measure of uncer-
tainty, the posterior probability of an excess 
risk (Pr[RR > 1 | data]), associated with the 
smoothed risk values (Richardson et al. 2004). 
These exceedence probabilities (Figure 2C) 
are also displayed in the RIF (Beale et al. 
2008). Areas with relative risks > 1 and pos-
terior probabilities > 0.8 are areas that we 
are 80% confident of an excess relative risk. 

Analogously, areas with relative risk and pos-
terior probability < 0.2 have a low relative risk 
with a probability of 80%. The impact of the 
adopted approach upon results can be clearly 
seen in Figure 2. The empirical Bayes model 
smoothes the risk toward the global mean, 
without accounting for spatial autocorrela-
tion; hence, the geographical pattern is similar 
to that of the raw SIRs, although with less 

extreme relative risks. The full Bayes model 
smoothes risks locally, thus accounting for 
spatial autocorrelation, so the risk pattern is 
less similar to those produced by the other two 
approaches, and the smoothing effect is more 
noticeable.

The routinely collected data on cancer 
regis trations and mortality did not provide evi-
dence of an increased risk of esophageal cancer 
incidence and mortality in the population of 
Norwich or Norfolk compared with England 
and Wales. The disease-mapping analysis did 
not reveal any areas with higher relative risks 
common to both males and females.

Discussion
Health and population data are increasingly 
becoming available; however, these data tend 
to be aggregated to administrative geographies 
due to the nature of data collection and/or 
confidentiality issues. The use of aggregated 
data in epidemiology has associated problems; 
nonetheless, ecological studies can be useful 
for detecting associations between exposure 
distributions and disease and can help tar-
get resources for further individual research. 
Several statistical methods can be used to 
estimate area-level rates and risks that can be 
mapped to aid interpretation. However, the 
availability of statistical techniques and tools 
to calculate and map small area risks does not 
necessarily ensure that meaningful results are 
achieved. All methods will be reliant on suf-
ficient, accurate, and complete underlying 
health and population data, as well as appro-
priate interpretation. Biases, ecological or 
otherwise, can be introduced into any spatial 
epidemiological study, and the methods used 
in the RIF are no exception. More details of 
limitations of spatial analysis are presented 
elsewhere (Beale et al. 2008) and are touched 
on below.

When undertaking a risk analysis, the 
study area should be selected to represent a 
population exposed (or perceived to be) to 
the pollution source or pollutant of interest. 
Accurately identifying the “at risk” popula-
tion is crucial and attempts should be made 
to reduce exposure misclassification when, 
for example, using proxy variables or indirect 
exposure assessment (Hodgson et al. 2007). 
Several different methods for defining areas of 
exposure have been incorporated into the RIF, 
including various methods to select specific 
areas geographically and spatially. Distance 
from source can be used as a proxy for expo-
sure, although it can be difficult to define 
what distances reflect a meaningful exposure 
differential. Ideally factors such as prevailing 
wind, topography, and emissions should be 
taken into account. A wide variety of GIS 
methods and bespoke dispersion models (for 
discussions, see Elliott et al. 2000; Jerrett et al 
2005) are now available to improve pollution 

Figure 2. Risks of esophageal cancer incidence, Norfolk, United Kingdom, 1984–2003. (A) SIR. (B) SIR using 
empirical Bayes smoothing. (C) SIR using full Bayes smoothing (adjusted for age and SES). All analyses 
used England and Wales as a reference.

Males

Males

Males

Females

Females

Females

Analysis includes adjustment for
age and SES

0 25 50 km

3.20 1.57 1.22 1.00 0.68 0.35 0.00

Posterior probability > 0.8

Table 3. Indirectly standardized risks of esophageal cancer in the County of Norfolk (1984–2003), using 
the population of England and Wales as a reference.

Adjusted for age Adjusted for age and SES
Sex Observed Expected SIR (95% CI) Expected SIR (95% CI)
Male 1,181 1239.33 0.95 (0.90–1.01) 1215.53 0.97 (0.92–1.03)
Female 736 792.43 0.93 (0.86–1.00) 780.99 0.94 (0.88–1.01)
Male + female 1,917 2031.76 0.94 (0.90–0.99) 1996.52 0.96 (0.92–1.00)

CI, confidence interval.
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modeling and exposure assessment, and data 
from these packages can be imported into 
the RIF to more accurately represent areas of 
exposure. However, no matter how well mod-
eled or how appropriately monitored, envi-
ronmental levels do not necessarily equate to 
exposure (Briggs 2003), and ecological data 
will not represent individual exposure.

Ecological data do not offer the spatial accu-
racy that individual data afford, and in addition 
to defining areas of exposure, effective selection 
of any affected populations is crucial. In ecolog-
ical analyses, the total populations of an admin-
istrative region will be classed as exposed if that 
region falls within the defined exposure area. 
However, using more complex spatial analysis, 
as permitted with GIS, users can reduce any 
“overselection”of population by including areas 
based on the geometric centroid (in terms of 
its shape) or, better still, by using population-
weighted centroid data. Both geometric and 
population weighted centroids can be used to 
select potential at risk populations in the RIF, 
although only geometric centroids are dynami-
cally calculated at runtime. Of course, all GIS 
functions for spatial selection are available to 
users, or indeed, they can specify the study pop-
ulation using prior knowledge.

Aggregated data tend to be collected for 
administrative areas that can change over 
time, causing problems for long-term stud-
ies. Further health and population data are 
often collected for administrative areas (e.g., 
census regions), whereas environmental data 
will often be collected or modeled, for dif-
ferent often nonconformable spatial areas. 
Indeed, data are often needed for geographical 
zones that do not correspond to administrative 
boundaries, and effectively combining data 
with different spatial boundaries takes care and 
skill to minimize errors than can be introduced 
at this stage (Briggs et al. 2008). The scale of 
analysis will affect the results obtained. Indeed, 
results will be, in part, a consequence of the 
chosen resolution of the data because of the 
“modifiable areal unit problem” (Openshaw 
1984), where changes in spatial aggregation 
or arrangement of areas can affect the under-
lying values for those areas, so observations are 
usually only relevant for the scale of analysis. 
To avoid the ecological fallacy, associations 
observed in an ecological study should not be 
imputed to individuals.

Attention must be given to the latency 
between exposure and disease onset to ensure 
the appropriate period of health data is used. 
Populations can change over time, including 
between censuses, so as study years extend 
from a census year, population estimates can 
become increasing unreliable. Interpolating 
between the census years can improve values, 
but never theless, this can be a source of error. 
Indeed, errors or variations in small-area popu-
lation counts can create major uncertainties, 

especially where health events are rare. In 
addition, for conditions with even a relatively 
short lag period, but especially for those end 
points with lag periods of decades, such as solid 
tumors, the impact of population migration 
must be considered. Over time, people will 
move in and out of the study area, or between 
exposure categories. In many cases, lack of suit-
able data precludes effectively accounting for 
migration, but failure to take migration into 
account, particularly where migration rates are 
known to be high, can result in exposure mis-
classification, biased risk estimates, and reduced 
study power, with the extent of migration bias 
related to both the magnitude and direction of 
the migration (Tong 2000). There is a need to 
further develop and use suitable methods to 
deal with this bias in spatial epidemiological 
analysis and tools, such as the RIF.

For some health end points, such as hos-
pital admissions, the ascertainment of data 
can differ between areas with local varia-
tions, introducing spurious spatial variation 
where higher disease incidence might be due 
to specialist local centers, proactive general 
practitioners, local disease registers, or local 
screening programs (Hansell et al. 2001). 
Conversely, lower disease incidence might 
be due to rurality or boundary effects, with 
populations moving between administrative 
areas to seek treatment. Furthermore, changes 
in the recording of health data, for example, 
changes between ICD revisions, can intro-
duce spurious temporal and/or spatial varia-
tion (Anderson and Rosenberg 2003).

The RIF affords numerous time and effi-
ciency savings compared with an ad hoc, 
study-by-study approach; however, the same 
care and consideration should be put into 
designing a RIF query as would be put into 
any other approach. This includes appropriate 
consideration for exposure assessment, study 
population identification, choice of appropri-
ate comparison population, mapping resolu-
tion, interpretation, and so forth.

Conclusion
The RIF provides a valuable tool for initial 
analyses of environmental health problems, 
providing ecological risk estimates indicating 
the presence or absence of a public health 
problem. The RIF cannot be used to assess 
individual-level associations or causal rela-
tionships, although evidence of an association 
observed from a RIF study will provide sup-
port for undertaking a more costly individual-
level study that may provide stronger evidence 
of causality. Methods such as those provided 
by the RIF allow investigative studies to be 
carried out across large geographical areas and 
over long time periods, avoiding constraining 
any analysis to a low number of cases, thereby 
increasing the statistical power to estimate the 
excess risk (Olsen et al. 1996). Such studies 

may otherwise be too involved to provide 
timely responses to any public concerns.

The RIF is one of several tools that support 
EPHT work and is designed to complement 
already existing methods. The RIF is distributed 
as freeware with documentation (Beale et al. 
2007), upon application to the CDC EPHT 
program (CDC 2004) or SAHSU (2009).
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